Explicit forms of zero modes in symmetric interacting Kitaev chain without and with dimerization*

Project supported by the National Natural Science Foundation of China (Grant No. 11274379) and the Research Funds of Renmin University of China (Grant No. 14XNLQ07).

Wang Yiming1, Li Zhidan1, Han Qiang1, 2, †
Department of Physics, Renmin University of China, Beijing 100872, China
Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China

 

† Corresponding author. E-mail: hanqiang@ruc.edu.cn

Project supported by the National Natural Science Foundation of China (Grant No. 11274379) and the Research Funds of Renmin University of China (Grant No. 14XNLQ07).

Abstract

The fermionic and bosonic zero modes of the one-dimensional (1D) interacting Kitaev chain at the symmetric point are unveiled. The many-body structures of the Majorana zero modes in the topological region are given explicitly by carrying out a perturbation expansion up to infinite order. We also give the analytic expressions of the bosonic zero modes in the topologically trivial phase. Our results are generalized to the hybrid fermion system comprised of the interacting Kitaev model and the Su–Schrieffer–Heeger (SSH) model, in which we show that these two types of zero modes can coexist in a certain region of its phase diagram.

Reference
[1] Kitaev A Y 2001 Phys.-Usp. 44 131
[2] Alicea J 2012 Rep. Prog. Phys. 75 076501
[3] Fendley P 2012 J. Stat. Mech. 2012 11020
[4] Hegde S S Vishveshwara S 2016 Phys. Rev. 94 115166
[5] Sau J D Clarke D J Tewari S 2011 Phys. Rev. 84 094505
[6] Alicea J Oreg Y Refael G von Oppen F Fisher M P A 2011 Nat. Phys. 7 412
[7] Leijnse M Flensberg K 2012 Semicond. Sci. Tech. 27 124003
[8] Mourik V Zuo K Frolov S M Plissard S R Bakkers E P A M Kouwenhoven L P 2012 Science 336 1003
[9] Das A Ronen Y Most Y Oreg Y Heiblum M Shtrikman H 2012 Nat. Phys. 8 887
[10] Deng M T Yu C L Huang G Y Larsson M Caroff P Xu H Q 2012 Nano Lett. 12 6414
[11] Rokhinson L P Liu X Furdyna J K 2012 Nat. Phys. 8 795
[12] Fu L Kane C L 2008 Phys. Rev. Lett. 100 096407
[13] Oreg Y Refael G von Oppen F 2010 Phys. Rev. Lett. 105 177002
[14] Lutchyn R M Sau J D Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[15] Stanescu T D Lutchyn R M Das Sarma S 2011 Phys. Rev. 84 144522
[16] Hassler F Schuricht D 2012 New J. Phys. 14 125018
[17] Thomale R Rachel S Schmitteckert P 2012 Phys. Rev. 88 161103(R)
[18] Katsura H Schuricht D Takahashi M 2015 Phys. Rev. 92 115137
[19] Kells G 2015 Phys. Rev. 92 155434
[20] Kells G 2015 Phys. Rev. 92 081401
[21] Miao J J Jin H K Zhang F C Zhou Y 2017 Phys. Rev. Lett. 118 267701
[22] Goldstein G Claudio Chamon 2012 Phys. Rev. 86 115122
[23] Su W P Schrieffer J R Heeger A J 1979 Phys. Rev. Lett. 42 1698
[24] Wakatsuki R Ezawa M Tanaka Y Nagaosa N 2014 Phys. Rev. 90 014505
[25] Sticlet D Seabra L Pollmann F Cayssol J 2015 Phys. Rev. 89 115430
[26] Gao Y Zhou T Huang H X Huang R 2015 Sci. Rep. 5 17049
[27] Liu D P 2016 Chin. Phys. 25 057101
[28] Zhou B Z Zhou B 2016 Chin. Phys. B 25 107401
[29] Klett M Cartarius H Dast D Main J Wunner G 2017 Phys. Rev. 95 053626
[30] Lin Y Hao W C Wang M Qian J Q Guo H M 2017 Sci. Rep. 7 9210
[31] Kawabata K Kobayashi R Wu N Katsura H 2017 Phys. Rev. 95 195140
[32] Ezawa M 2017 Phys. Rev. 96 121105(R)
[33] Wang Y Miao J J Jin H K Chen S 2017 Phys. Rev. 96 205428